Applied Physics Lanthanum and Cerium Hexaboride (LaB6 and CeB6) Filaments / Cathodes
Building the World’s Best Cathodes Lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6) cathodes are ideal for many small spot size applications such as SEM, TEM,
surface analysis and metrology, and for high current applications such as microwave tubes, lithography, electron-beam welders, X-ray sources and free electron lasers.
Applied Physics Technologies has decades of experience in research, development, and manufacturing of LaB6 and CeB6 cathodes. We can provide the cathodes you need for replacement, OEM, and custom applications
The unique properties of hexaboride crystals provide stable electron-emitting media with work functions near 2.65 eV. The low work function yields higher currents at lower cathode temperatures than tungsten, which means greater brightness (or current at the beam focus) and longer cathode life. Typically, these cathodes exhibit 10 times the brightness and more than 10 times the service life of tungsten cathodes. In electron microscope applications, these characteristics translate to more beam current in a smaller spot at the sample, improved resolution, and less frequent cathode replacement. For applications with large beam spot sizes, where large total current and current density are required, large, flat crystal faces of LaB6 or CeB6 can be the cathodes of choice. This regime is unsuitable for point sources such as field emitters, which are unable to provide sufficient total current, and has been thought of as the realm of the dispenser cathode. However, LaB6 and CeB6 may be more suitable, being particularly robust and resistant to chemical poisoning. They have modest vacuum requirements and long shelf life, and need only be brought up to operating temperature to provide emission, eliminating the activation procedure required of dispenser cathodes. They can provide long-term, stable operation at current densities up to 50 A/cm2, and may be fabricated in a variety of shapes and with many different heating and mounting configurations. LaB6 and CeB6 are the materials of choice for high current cathodes in a variety of advanced and custom applications. The performance and lifetime of the hexaboride cathode are determined by several factors: vacuum level, cathode temperature, impurity level, crystal orientation, tip shape, and mount design. Vacuum requirements are more stringent for hexaboride emitters than for tungsten in order to minimize carbon contamination. In laboratory tests, CeB6 has proven to be more resistant to the negative impact of carbon contamination than LaB6, which gives it an edge in potential cathode lifetime. Excessive operating temperatures accelerate evaporation, thus decreasing the life of the cathode. Care must be taken to properly optimize cathode temperature to obtain the required emission without overheating the crystal. CeB6 has another advantage over LaB6 relating to lifetime: its evaporation rate at normal operating temperatures near 1800 K is lower than that of LaB6 . So long as care is taken to operate the cathode below 1850 K, CeB6 should maintain an optimum tip shape longer, and therefore last longer.
CeB6 <100>
LaB6 <100>
Tungsten Filament
Brightness (A/cm2-sr)
107
107
106
Short-term beam current stability % RMS
<1
<1
<1
Typical service life (hr)
1,500+
1000+
30-100
Operating vacuum (torr)
10-7
10-7
10-5
Work function (eV)
~2.65
~2.70
4.5
Evaporation rate (g/cm2-sec)
1.6 x 10-9
2.2 x 10-9
A comparison of electron emission characteristics of LaB6, CeB6 and tungsten at typical operating temperatures Crystal Growth Hexaboride crystals are grown and purified in an inert gas atmosphere to specified crystal orientations. Impurities in the crystal will reduce both brightness and lifetime of the emitter because impurities increase both work function and volatility. We grow and fabricate our own high quality, single-crystal materials using a well-defined process called Inert Gas Arc Float Zone Refining.’ An electric arc melts a pressed-powder stick of LaB6 or CeB6 in a controlled atmosphere of inert gas, allowing the liquid-phase zone to freeze onto a selected-orientation seed crystal as the arc is moved along the stick. The finished crystal assumes the desired orientation of the seed with less than 30 parts per million by weight metal impurities. Correct melt zone temperature and process speed minimize excessive boron evaporation to achieve the optimum ratio of metal to boron atoms in the grown crystal.
Hexaboride crystals are grown and purified in an inert gas atmosphere to specified crystal orientations.
Crystal Orientation Crystal orientation can be selected to match the cathode design or application. For electron microscopy, the <100> orientation is most desirable due to its brightness and crystal plane symmetry about the optical axis. As the cathode ages, the plane symmetry ensures an even evaporation rate relative to the axis, maintaining a centered, flat emitting surface (See figure). Also, the emission patterns from the symmetric crystal planes will remain consistent as they become more exposed by evaporation, contributing to a brighter beam spot.
The “tophat” design cathode provides a large-area crystal face electron source for maximum total current.
Cathode Tip Design The design of the cathode tip is critical for maximum lifetime and optimum performance. Tip design must also match the specific application’s requirements for beam current, spot size, and brightness. For electron microscopy, a conical tip with a flat emitting surface at the apex has proven to be the optimum design. With the flat-tipped cone design, changes in both cone angle and flat diameter affect emission characteristics. In general, the small cone angle (60°) results in higher brightness, but a larger angle (90°) provides longer life and easier alignment. Small flat diameters also result in higher brightness plus a smaller source size, but larger flats provide longer lifetimes and more beam current. These trends allow us to tailor our cathodes to the requirements of practically all thermionic cathode applications. For example, SEM and most transmission electron microscope (TEM) applications are best served by a 90° cone angle and a 16 mm flat tip. This combination provides high brightness, a moderate source size, and very good lifetime. High resolution TEMs require a 60° cone and a 5 mm flat tip for very high brightness and a small source size. In applications requiring high total current in a large beam spot, a <310> oriented crystal in a “top hat” configuration may be preferred, providing a slightly lower work function and large emitting surface. We excel at developing specialized cathodes for custom applications and research purposes. Contact us for your custom cathode needs.
The cathode’s mount design has a significant impact on performance. The design must be simple, durable and precise. It must resist any movement of the crystal, despite the high operating temperatures, yet be easy to install and align. We feel we employ the best mount design in the industry, the Mini Vogel Mount. In 1988, FEI of Hillsboro, Oregon introduced the Mini Vogel Mount (MVM) to provide the benefits of the original Vogel mount in a smaller, simpler, and more elegant design. Twin posts are rigidly fixed in a thick ceramic base, and bent towards the center in an inverted “V”. The posts are made of a molybdenum-rhenium alloy that maintains a high modulus of elasticity even at high temperatures. The posts are spread slightly during assembly to allow placement of small pyrolytic graphite blocks between the crystal and posts. The blocks act as resistive heaters, and help thermally isolate the hot crystal from the highly conductive posts. When the compressive force of the posts is released, the crystal is held with strength and precision. The clamping force of the posts will remain near 5,000 psi for the life of the cathode. The structure of the MVM is amazingly robust, sustaining reasonable impact without deviating from structural specifications. Because the graphite pads shield evaporation of the crystal in the direction of the clamping force, the emitter crystal can be fully utilized without degradation of the mount. Structural failure of the MVM is not a concern when the cathode is operated within the correct temperature and pressure range. Typically, the beam stability of the Mini Vogel Mount cathode exceeds the specifications of the system in which it runs.
LE RESPECT DE VOTRE VIE PRIVÉE EST NOTRE PRIORITÉ
Nos partenaires et nous-mêmes utilisons différentes technologies, telles que les cookies, pour personnaliser les contenus, proposer des fonctionnalités sur les réseaux sociaux et analyser le trafic. Merci de cliquer sur le bouton ci-dessous pour donner votre accord. Vous pouvez changer d’avis et modifier vos choix à tout moment.. J'ACCEPTERefuserEn savoir plus
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Durée
Description
__cf_bm
30 minutes
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
__hssc
30 minutes
HubSpot sets this cookie to keep track of sessions and to determine if HubSpot should increment the session number and timestamps in the __hstc cookie.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Durée
Description
_gat
1 minute
This cookie is installed by Google Universal Analytics to restrain request rate and thus limit the collection of data on high traffic sites.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Durée
Description
hubspotutk
5 months 27 days
HubSpot sets this cookie to keep track of the visitors to the website. This cookie is passed to HubSpot on form submission and used when deduplicating contacts.
_ga
2 years
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_ga_JPH2ZFZK0F
2 years
This cookie is installed by Google Analytics.
_gid
1 day
Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
_hjAbsoluteSessionInProgress
30 minutes
Hotjar sets this cookie to detect the first pageview session of a user. This is a True/False flag set by the cookie.
_hjFirstSeen
30 minutes
Hotjar sets this cookie to identify a new user’s first session. It stores a true/false value, indicating whether it was the first time Hotjar saw this user.
_hjIncludedInPageviewSample
2 minutes
Hotjar sets this cookie to know whether a user is included in the data sampling defined by the site's pageview limit.
_hjIncludedInSessionSample
2 minutes
Hotjar sets this cookie to know whether a user is included in the data sampling defined by the site's daily session limit.
_hjTLDTest
session
To determine the most generic cookie path that has to be used instead of the page hostname, Hotjar sets the _hjTLDTest cookie to store different URL substring alternatives until it fails.
__hstc
5 months 27 days
This is the main cookie set by Hubspot, for tracking visitors. It contains the domain, initial timestamp (first visit), last timestamp (last visit), current timestamp (this visit), and session number (increments for each subsequent session).
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Avis
Il n’y a pas encore d’avis.